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E X A C T  P E R I O D I C  A N D  L O C A L I Z E D  S O L U T I O N S  OF T H E  E Q U A T I O N  ht -- A In h 

S. N. Aristov UDC 517.946 

New exact regular solutions of the nonlinear-diffusion equation are found. Various types of 
evolution of certain classes of localized initial perturbations are described. We show that, when 
a localized distribution in the form of a ring is specified, the instantaneous occurrence of the 
singularity in its center results from the diffusive spreading. 

I n t r o d u c t i o n .  The nonlinear diffusion equation is often used in various applications and has attracted 
the attention of many investigators. One variant of this equation that describes the evolution of a thermowedge 
[1], i.e., spreading of thin fluid films over a rigid body surface [2], and some other problems [3-5] is the subject 
of research of the present paper. We shall consider the equation 

ht = Alnh ,  (1) 

where the subscript denotes differentiation with respect to time and A is the three-dimensional Laplacian. 
According to the accepted terminology, Eq. (1) is the limiting form of the fast-diffusion equation. As far 
as we know, the exact solutions of Eq. (1) described in the literature have singularities, which make their 
physical interpretation difficult. We shall consider periodic and localized positive solutions, since they are of 
the greatest interest from the viewpoint of applications. From the variety of possible exact solutions, we confine 
our attention to those which can be written explicitly and demonstrate most clearly the special properties of 
the equation considered. 

One-Dimens iona l  Solut ions .  (1) In considering nonstationary solutions which depend on only one 
coordinate, it is natural to study self-similar regimes of the evolution of initial perturbations. Equation (1) 
is known [2, 5] to admit a class of self-similar solutions with an arbitrary self-similar index that controls the 
scale of coordinate extension with time. If we restrict ourselves to the case where self-similar equations take 
the form of a conservation law, one of the possible solutions can be written in the form 

h = (7 "4" t ) - lH(~) ,  ~ --= x(v + t) -1 (2) 

(r is an arbitrary constant). Substituting (2) into (1) and performing identical manipulations, we obtain 

where a is a constant. Integrating, we obtain a linear equation for the function inverse to H, which enables 
us to find a localized solution of the form 

a x  otz - I  

h -  ( r + t )  

In order that this solution have no singularities, the constant C must be greater than unity. If c~ is equal to 
zero, Eq. (3) takes the form 

h = 2(r + t) 
2 C ( r  + t )  2 + x 2" 
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The  above solution describes the spreading of a one-dimensional layer and is regular at any moment  of 
time. In the asymmetrical  case, the max imum of per turbat ion moves with constant  speed towards the more 
shallow front. It should be noted that  here and henceforth the t ime is reckoned from the zero value. The  
arbitrary constants which enter (4) determine the characteristic dimension and the ampli tude of the initial 
perturbation.  

(2) Another  solution describes the uniformly moving front and has the form [1] 

h = = z - f t .  (4)  

Subst i tut ing (4) into Eq. (1) and integrating, we obtain 

~ (3 1 =f_~, 

where a and f are arbitrary constants. Writing the general solution and satisfying the regularity conditions, 
we have 

a 2 

h = a f  + exv ( - a ( z  - Bit)) (5) 

It is noteworthy that  to satisfy the condition of the absence of singularities, the constants a and f should be 
of the same sign. It follows from the analysis of (5) that  the front moves in the direction of the decreasing 
thickness of the fluid layer, and the constants determine the width of the front, its velocity, and the thickness 
of the per turbed fluid layer. 

(3) To describe self-similar regimes which correspond to the spreading of a line or cylinder, we introduce 
the cylindrical coordinate system and use the transformation 

h(r,~o,t) = r -2h(z ,y , t ) ,  x = lnr ,  y = ~0. (6) 

We note that ,  for the  axisymmetrical  case, this t ransformation was used in [2]. Using (6), we obtain the 
following formulas for the case of cylindrical symmetry:  

a 2 r a - 2  

h = r" + C e x p  ( t ) ;  (7) 

~ r r t r  m - 2  

h = C + t i n ( m i n t -  1)' m = r + t "  (S) 

The  first solution describes the slow spreading of a localized spot or ring and does not differ qualitatively 
from the above diffusive regimes of evolution of a plane layer. The  lifetime of this per turbat ion is unbounded 
and does not depend on the characteristic dimensions of the initial perturbat ion.  For a < 2, expression (7) 
describes the evolution of the line which has a singularity at the coordinate origin. Solution (8) is of significant 
interest, since it demonstrates  the possibility of instantaneous rearrangement of the per turbat ion structure 
at the moment  which corresponds to m = 2. In contrast to the first regime, the ring shrinks up to a certain 
critical moment  of t ime, which leads to the cumulation and instantaneous alteration of the structure for 
m = 2. At this moment ,  a singularity occurs in the center of the ring, which then damps out hyperbolically. 
In this case, t ime plays the role of a bifurcational parameter.  This character of solution corresponds to jet 
ejection of the fluid when a heavy body falls on it. This cumulative effect is caused by the above mentioned 
property of asymmetrical  perturbat ions (4) to displace in the direction of the slower decrease in the layer 
thickness. 

(4) In the three-dimensional case where the point is the evolution of the spherical perturbation,  one 
can construct  a self-similar solution of the form h = (r  - t)3H(~) and ~ = r ( r  - t). Integrating, we obtain the 
equation for the function H: 

~ H + (9) 

The solution of this equation reduces to quadratures,  but it cannot be expressed via elementary and special 
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functions. Solving this equat ion numerically, we infer that  if the integration constant  a is positive, the solution 
has one max imum and the following asymptotes:  

H = 2,  - - ,  oo ;  H = e• - - ,  0 .  

For zero values of a ,  there exists an analytical solution, the particular form of which was found in [2]: 

h = 2(r  - t) a 
2C + (r  - t)2(x 2 + y2 + z2) �9 

M u l t i d i m e n s i o n a l  S o l u t i o n s .  (1) We seek asymmetrical  solutions in the  form 

h = (r - t ) g ( x , y , z ) .  (10) 

Subst i tut ing (10) into (1), we obtain the stat ionary equation 

A l n H  = - H .  (11) 

In the two-dimensional case, Eq. (11) coincides with the Liouville equation,  whose general solution 
is expressed in terms of an arbitrary complex function [6]. The  types of possible solutions of Eq. (11) were 
discussed in many  papers, for example,  in [6-8] (see also the  references cited therein);  therefore, we do not 
dwell upon the details of analysis here and write only the two-dimensional periodic localized solutions that  
we are aware of: 

H = 2N 2 ( 1 - e 2 ) / (cosh(Nx) + ~ sin(Ny) )2; (12) 

H = 8N2(1 - ~2)r2N-2/(1 + r 2N + 2er Iv sin(Ncp)) 2. (13) 

Here e is a constant  having the  meaning of a bifurcation parameter .  
The  first solution is known in the shallow water theory, and the second solution was found probably 

in describing stat ionary structures in the plasma [7]. We note that  these solutions change to one another by 
means of the t ransformation (6). If e = 0, formulas (12) and (13) describe one more type of evolution of 
plane and axisymmetrical  initial perturbat ions.  The  fact tha t  the lifetime of the periodic structures described 
by solutions (12) and (13) can exceed the characteristic diffusion period is worth noting. This enables us to 
interpret  t hem as quasis tat ionary ' formations which can collapse during a period which is much lesser than 
the characteristic diffusion period for certain relations between the ampli tude and characteristic dimension of 
the initial perturbat ion.  

(2) We shall seek three-dimensional nonsymmetr ical  solutions of Eq. (1) in the form 

h = ( r - t ) r - 2 H ( O , ~ ) ,  

where r, 0, and ~ are the spherical coordinates. We note tha t  in contrast to the above solutions, this solution 
has a singularity at the coordinate origin and describes the decay of the del ta  function. Subst i tut ing the 
indicated expression into (1), we obtain 

0 0 
- H  = - 2 +  s in-20  sin 0 ~--~ sin 0 ~--~ + lnH.  (14) 

We find the solution of Eq. (14) in the form 

H = sin - 2  OF(x ,  y ) ,  x = In( tan(O~2)) ,  y = 

As a result, Eq. (14) reduces to the Liouville equation [6] writ ten in the Cartesian coordinates, which makes 
it possible to use formula (12) as one of the solutions. Passing to the spherical coordinates, we finally have 

h - r - t 8N2(1 - 6 2) sin 2N-2 0 (15) 

r 2 [(1 + cos0) g + (1 - cosg) g + 2r g 0sin(g~2)] 2' 

where N is an integer and ~ is an arbitrary constant the max imum value of which is equal to unity. Solution 
(15) describes toroid-like structures.  For N = 1 and ~ = 0, it coincides with the solution of [3], which was 
obtained in studying the evolution of the singular axisymmetrical  initial distribution. 



Conclusions.  We note that, probably, the only stationary regular solution of Eq. (1) exists only in 
the three-dimensional case and can be presented as follows: 

h = Cexp(- I / r ) ,  r2 = x2 + y2 + z 2. 

It is of interest to find a criterion which can be used to determine the character of damping. According 
to the results, the localized perturbation can spread slowly or disappear for a certain characteristic time 
determined by the amplitude and dimensions of the perturbation. The possibility of instantaneous occurrence 
of a singularity at the center of the spreading ring has been established. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 97-01- 
00063). 
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